Simulation modeling of the ship automated hydraulic system failures

Authors: A.A. Ravin, M.A. Maksimova

Abstract

One of the important information components in predicting the actual operational reliability, setting requirements for systems of emergency protection and diagnostics and substantiating the maintenance strategy is to assess the technical and economic consequences of possible failures in individual nodes of technical systems. When applied to stochastic objects, randomly changing their state in time, an effective way to conduct relevant research is the application of computer simulation modeling. As an example of such a stochastic object, the article describes an automated hydraulic system, which includes the storage tank level sensors, centrifugal pumps, consumers, randomly changing the queries of water in time, and discrete algorithm control of the water level in the tank. The software model provides a simple and convenient way for the user to configure settings, as well as intuitive animated on-screen representation of the modeling process and its results. Modeling different types of the system failures has made it possible to identify the characteristic disruption of normal system operability and to evaluate the relevant technical and economic consequences.

Keywords: stochastic system, the consequences of failures, simulation.

References

1. Shennon Robert. Imitatsionnoye modelirovaniye sistem: iskusstvo i nauka [Simulation modeling: art and science]. Moscow, Mir Publ., 1978, 424 p.

2. Pytyev Yu.P. Metody imitatsionnogo modelirovaniya informatsionno-izmeritelnykh system [Simulation modeling methods of information-measuring systems]. Moscow, MAIK Nauka Publ., 2004, 400 p.

3. Lou A., Kelton V. Imitatsionnoye modelirovaniye [Simulation Modeling and Analysis]. St. Petersburg, Piter Publ., 2004, 848 p.

4. Sovetov B. Ya., Yakovlev S.A. Modelirovaniye sistem: Ucheb. dlya vuzov. 3-e izd.. pererab. i dop [System modeling: Tutorial for university, the 3d ed.]. Moscow, Vyssh. shk., 2001, 343 p.

5. Myshkis A.D. Elementy teorii matematicheskikh modeley. 3-e izd. ispr. [Mathematical model theory elements, the 3d ed.]. Moscow, KomKniga Publ., 2007. 192 p.

6. Maksimey I.V. Imitatsionnoye modelirovaniye slozhnykh sistem. Chast 1. Matematicheskiye osnovy. Uchebnoye posobiye [Simulation Modeling of complex systems. Part I. Mathematical basis. Tutorial]. Minsk, BGTU Publ., 2009, 263 p.

7. Dukhanov A.V. Medvedeva O.N. Imitatsionnoye modelirovaniye slozhnykh system [Simulation Modeling of complex systems]. Vladimir, Vladimir State University, 2010, 115 p.

8. Reynkhardt Robert, Daud Snou. Macromedia Flasch MX 2004. Bibliya polzovatelya: Per. s angl. [Macromedia Flasch MX 2004. User bible: translated from English]. Moscow, “Viliams” Publ., 2005, 1312 p.

9. Macromedia Flasch MX 2004 ActionScript 2.0. Spravochnik razrabotchika: Per. s angl. [Macromedia Flasch MX 2004 ActionScript 2.0. developer manual: translated from English]. Moscow, “Viliams” Publ., 2005, 896 p.

About authors: 

Ravin Aleksander - DSc, associate professor, professor, St. Petersburg State Marine Technical University, 3, Lotsmanskay str., 190121, St. Petersburg, Russia, e-mail: ravinlki@mail.ru

Maksimova Marina - PhD, associate professor, St. Petersburg State Marine Technical University, 3, Lotsmanskay str., 190121, St. Petersburg, Russia, e-mail: MaximovaMA@yandex.ru

Issue: 50/51 (2018)

For citation: A.A. Ravin, M.A. Maksimova. Simulation modeling of the ship automated hydraulic system failures. Research Bulletin by Russian Maritime Register of Shipping. 2018, No. 50/51, pp. 93-97.



* * *



UDC:  004.94
Pages:  93-97