Scaling effect in air cushion vessels dynamics

Scaling effect in air cushion vessels dynamics

Authors: A.V. Zhidkov, F.S. Peplin, V.V. Shabarov

 

Abstract

 

This paper considers the impact of the air compressibility effect on dynamics of air cushion vehicles and surface effect ships. It has been demonstrated that model tests based on Froude number do not consider compressibility of the air. The results of the numerical simulations presented in this paper has shown that neglecting the air compressibility may lead to significant errors in predicting ship's seakeeping behavior by scaling results from model tests. The results of this paper have been based both on the theoretical analysis of the mass balance equation applied for the air cushion zone and on the vehicle's dynamics simulations in time domain. The latter approach has used the system of differential equations which consists of rigid body equations, equations describing air cushion pressure evolution and equations that allow to calculate forces on the ship's hulls. The model of the irregular sea waves has been used. The method presented here allows to calculate correction terms that may be used to increase precision of the model tests in any given operational conditions.

 

Keywords: air-cushion vehicle, dynamics, seakeeping, model tests, Froude number.

 

References

1. Russian Maritime Register of Shipping. Rules for the Classification and Construction of High-Speed Craft. St.-Petersburg, 2018. (In Russian)

2. Russian River Register. Rules for the Classification and Construction of Ships. Moscow, 2019.

3. Afremov A.Sh., Zaytsev O.A. Osobennosti nestatsionarnykh sil, voznikayushchikh pri vynuzhdennoy vertikal'noy kachke SVP, [Specific features of non-stationary forces occurring during forced heaving of hovercraft] Voprosy sudostroeniya, ser. Proektirovanie sudov, Issue. 14, 1977.

4. Afremov A.Sh., O fizicheskoy prirode vertikalnykh avtokolebaniy skegovykh sudov na vozdushnoy podushke [On physical nature of vertical hydrokeel autooscillations], Voprosy sudostroeniya, ser. Proektirovanie sudov, Issue. 28, 1981, pp. 55 — 61.

5. Afremov A.Sh., Voronin V.A., Dyachenko V.K. Raschet kachki i nagruzok v korpuse amfibiynogo SVP na volnenii [Calculation of heave and loads in amphibious air cushion vehicles on waves], Trudy TsNII im. A.N.Krylova, Issue 17(301), 2003.

6. Tumanin A.V., Shabarov V.V. Metodika chislennogo modelirovaniya dinamiki dvizheniya amfibiynogo sudna na vozdushnoy podushke s gibkim ograzhdeniem ballonetnogo tipa [Metod of digital modelling of movement dynamics of amphibious air cushion vehicles with ballonet type board seals] Sbornik dokladov X mezhdunarodnoy konferentsii po gidroaviatsii "Gidroaviasalon-2014", September 5 — 6, 2014, Part II -Moscow, 2014.

7. Tumanin A.V., Shabarov V.V. Chislennoe issledovanie dinamiki dvizheniya po vodnoy poverkhnosti amfibiynogo sudna na vozdushnoy podushke s gibkim ograzhdeniem ballonetnogo tipa [Digital research into the movement dynamics of amphibious air cushion vehicles with ballonet type board seals] Nizhny Novgorod: Problemy prochnosti i plastichnosti. — 2014. V. 76. No. 3.

8. Bertram V. Practical ship hydrodynamics. — Elsevier, 2011.

9. Boroday I. K., Netsvetaev Yu. A. Morekhodnost sudov [Seakeeping of ships]//L.: Sudostroenie. — 1982.

10. Logvinovich G.V. Gidrodinamika techeniy so svobodnymi granitsami [Hydrodynamics of free borders currents] Kiev: Naukova dumka, 1969.

11. Grumondz V. T. , Zhuravlev Yu. F. , Paryshev E. V. , Sokolyanskiy V. P. , Shorygin O. P. Gidrodinamika i dinamika vysokoskorostnogo dvizheniya tel v zhidkosti [Hydrodynamics and dynamics of high-speed movement of bodies in liquid]. M.: Nauka, 2013.

12. Kalyasov P.S., Tumanin A.V., Shabarov V.V., Yakimov A.K. Matematicheskoe modelirovanie nesushchego kompleksa sudov na vozdushnoy podushke (SVP) [Mathematical modelling of the bearing complex of air cushion vehicle]. Morskoy vestnik, S-Pb, 2011, No. 1.

13. Tumanin A.V., Kalyasov P.S., Shabarov V.V. Modelirovanie aerogidrouprugogo vzaimodeystviya gibkogo ograzhdeniya sudna na vozdushnoy podushke s vodnymi i vozdushnymi potokami [Modelling of aeroelastic interaction of the board seals of the air cushion vehicle with water and air currents] Sbornik dokladov IX mezhdunarodnoy konferentsii po gidroaviatsii "Gidroaviasalon-2012", September, 7 — 8, 2012, Part I —Moscow, 2012.

14. Peplin F., Shabarov V., Tumanin A. Determination of loads acting on the ballonet type board seal of amphibious hovercrafts//FAST 2017 Conference Proceedings, Nantes, 2017.

15. Eremeyev V.O., Peplin F.S., Tumanin A.V. Mathematical Model of the dynamics of an Air Cushion Vehicle with ballonet type skirt on water. Procedia Engineering. 2017.

16. Connell B. S. H. et al. Single and multi-body surface effect ship simulation for T-Craft design evaluation //Proceedings of 11th international conference on fast sea transportation. — 2011.

17. Vassalos D., Nan Xie, Jasionowski A., Konovessis D. Stability and safety analysis ofthe air-lifted catamaran, Ships and Offshore Structures, 3:2, 2008, pp. 91 — 98.

18. Hassani V. et al. "Adaptive Boarding Control System in Surface Effect Ships" 2019 18th European Control Conference (ECC). IEEE, 2019.

 

About authors:

A.V. Zhidkov - associate professor. Lobachevsky State University, Nizhniy Novgorod, e-mail: alexander.zhidkov@itmm.unn.ru

F.S. Peplin - associate professor. Lobachevsky State University, Nizhniy Novgorod, e-mail: f-peplin@yandex.ru

V.V. Shabarov - associate professor, associate professor. Lobachevsky State University, Nizhniy Novgorod, e-mail: isadymacar@yandex.ru

Issue: 60/61 (2020)

For citation: A.V. Zhidkov, F.S. Peplin, V.V. Shabarov. Scaling effect in air cushion vessels dynamics. Research Bulletin by Russian Maritime Register of Shipping. 2020, No. 60/61, pp. 56-65.

UDC 629.12

Pp: 56-65