Study of "flying wing" wig craft longitudinal stabilization using computational fluid dynamics

Study of "flying wing" wig craft longitudinal stabilization using computational fluid dynamics

Authors: E.M. Gramuzov, A.V. Fevralskikh, M.S. Makhnev

 

Abstract

 

The article studies the possibility of self-stabilizing the longitudinal movement of the wing and WIG type "flying wing" near the ground. The main features for the "flying wing" WIG type are the possibility of increasing the specific payload, as well as greater maneuverability in narrow fairways and winding sections of routes in river channels, in the coastal zone, compared to "airplane" WIG types. The key problem of justifying the WIG "flying wing" type remains the predicting of longitudinal stability characteristics, including the coefficient of longitudinal aerodynamic damping, that is, a derivative of the coefficient of pitch moment of pitch angle speed. At the same time, it is important to consider that the aerodynamic type of the lightweight WIG aircraft shall have the stability of cruising movement without the use of automatic control system. This paper determines the values of the rotational derivative of the pitch torque derived from the angular velocity of the pitch rate for wings with different aspect ratio moving near the ground, as well as for the "flying wing" type arrangement using the Ansys commercial numerical simulation software. The dependences of the longitudinal damping coefficient on the position of the center of mass and the height above the ground have also been determined; the influence of the wing's sweep has been studied. The aerodynamic characteristics of the "flying wing" WIG type with the solution of longitudinal motion equations using data obtained from numerical modeling has been determined. Recommendations on the choice of position of the center of masses and heights of motion of the WIG on the basis of the investigated types have been given, "flying wing" WIG type meeting the criteria of longitudinal static stability and having its own dynamic stability therewith.

 

Keywords: ground effect, flying wing, longitudinal stability, numerical simulation.

 

References

1. Ekranoplany: transportnye suda XXI veka [WIG: atransport ships of the XXI century] / A.I. Maskalik [et al.]. — St. Peterburg: Sudostroenie, 2005. — 576 p. (In Russian).

2. RozhdestvenskyK.V. Wing-in-ground effectvehicles /K.V. Rozhdestvensky//Progress inaerospace sciences. —No. 42. —2006 —pp. 211 —283.

3. Ekspertiza ekranoplanov [WIG's Examination] A.N. Panchenkov [et al.]. — Nizhnij Novgorod: Povolzhe, 2006. — 655 p. (In Russian).

4. Fevralskikh A.V. Razrabotka metodiki proektirovaniya aerogidrodinamicheskoy komponovki amfibijnogo sudna na vozdushnoj podushke s aerodinamicheskoy razgruzkoy na osnove chislennogo modelirovaniya [Development of the method of aerohydrodynamic amphibious hovercraft design with aerodynamic unloading based on numerical modeling. Abstract of dis. dr. sci.]: dis. kand. tekhn. nauk. — Nizhny Novgorod: NGTU im. R.E. Alekseeva, 2017. — 175 p. (In Russian).

5. Irodov R.D. Kriteriy prodol'noj ustojchivosti ekranoplana pri polete s postoyannoy skorostyu vblizi ekrana [Criterion longitudinal flying stability of WIG at a constant speed near the screen] / R.D. Irodov //Uchenye zapiski TsAGI. — 1970. — No. 4. — T. 1. — pp. 63 — 74. (In Russian).

6. Vasiliy Shabarov, Pavel Kaliasov, Fedor Peplin. Influence of ground effect on longitudinal aerodynamic damping of wing-in-ground effect vehicles /Vasiliy Shabarov [et al.] //Ship Technology Research — 2020 — DOI: 10.1080/09377255.2020.1724647.

7. Gramuzov E.M., Fevralskikh A.V. Aerodinamicheskiy profil nesushego kryla dlya skorostnyh ekrannyh sudov s kormovym raspolozheniem centra mass [Airfoil wing for high speed WIG craft with a rear location of center of mass] /E.M. Gramuzov [et al.] //Vestnik Volzhskoj gosudarstvennoj akademii vodnogo transporta. — 2016. — № 49. — ISSN: 1991-8275 — pp. 117 — 122. (In Russian).

8. Gramuzov E.M., Lyubimov V.I., Smirnov K.V., Sosnov A.V., Fevralskikh A.V Avtomatizirovannaya optimizaciya komponovki kryla i gorizontalnogo opereniya ekranoplana po rezultatam chislennogo modelirovaniya aerodinamiki [Automated Optimization ofthe wing and the horizontal tail WIG by results of numerical simulation of aerodynamics] /E.M. Gramuzov [et al.] //Marine intellectual technologies — 2019. — No. 1 (43) — v.3 — ISSN: 2073-7173 — pp. 38 — 47. (In Russian).

9. Glauert H. The Lift and Pitching Moment of an Aerofoil Due to a Uniform Angular Velocity of Pitch. R. & M. 1216, 1929.

10. Fevralskikh A.V. Chislennoe issledovanie vliyaniya udlineniya kryla na kharakteristiki dvizheniya pod deystviem ekrannogo effekta amfibiynogo sudna na vozdushnoy podushke s aerodinamicheskoj razgruzkoy [Numerical study of the effect on wing aspect ratio of ground effect amphibian hovercraft with aerodynamic unloading] /A.V. Fevralskikh // Izvestiya KGTU — 2019 — No. 53 — pp. 182 — 193. (In Russian).

 

About authors:

E.M. Gramuzov - DSc, professor, Nizhny Novgorod State Technical University named after R.E. Alexeyev, NIzhny Novgorod, e-mail: terkor@nntu.ru

A.V. Fevralskikh - PhD, JSC "CADFEM CIS" Engineer, Moscow, e-mail: a.fevralskih@gmail.com

M.S. Makhnev - JSC "CADFEM CIS", Moscow, e-mail: kleonorm@gmail.com

Issue: 60/61 (2020)

For citation: E.M. Gramuzov, A.V. Fevralskikh, M.S. Makhnev. Study of "Flying Wing" WIG Craft Longitudinal Stabilization Using Computational Fluid Dynamics. Research Bulletin by Russian Maritime Register of Shipping. 2020, No. 60/61, pp. 66-74.

UDC 629.576

Pp: 66-74