Optimization of anchoring systems of offshore floating structures

Optimization of anchoring systems of offshore floating structures

Authors: A.S. Bolshev, S.A. Frolov, E.V. Shonina

 

Abstract

 

The article considers the problems of design and configuration of anchoring systems for floating marine structures, while discussing the methods of improving and optimizing of anchoring systems presented in the publications of Russian and foreign authors. The parameters that affect the safety of functioning of floating marine structures have been identified and potential criteria have been discussed. The restrictions imposed on non-critical parameters have also been considered. The optimization criterion of anchoring systems of marine floating structures in extreme modes of operation has been formulated and a method for optimizing of anchoring systems in accordance whereof has been suggested. An example of the implementation of the proposed optimization procedure has also been presented.

 

Keywords: marine floating anchored structures, anchoring systems, multiparametric optimization of anchoring systems, survival mode, penalty function method, golden section method.

 

References

1.   Simakov G.V., Shkhinek K.N., Smelov V.A. et al. Morskie gidrotekhnicheskie sooruzheniya na kontinentalnom shelfe [Marine hydrotechnical structures on the continental shelf] — L.: Sudostroenie, 1989. — 328 p.

2.   Elistratov V.V. et al. The investigation of conceptual approaches to the creation of marine ice-resistant floating wind power plant. Proceedings of the International Offshore and Polar Engineering Conference. 2019. Vol. 1. pp. 428 — 434.

3.   Rules for the Classification, Construction and Equipment of Mobile Offshore Drilling Units and Fixed Offshore Platforms, Russian Maritime Register of Shipping, St. Petersburg, 2018, 479 p. (In Russian)

4.   Tertyshnikova A.S., Blagovidova I.L., Kushnir V.M. Parameters of the position system for the deep-water drilling platform. Vestnik SevNTU [Bulletin of SevNTU]. 2010. No. 106. pp. 164 — 167.

5.   Xu K., Gao Z., Moan T. Effect of hydrodynamic load modelling on the response of floating wind turbines and its mooring system in small water depths. Journal of Physics: Conference Series. 2018. Vol. 1104. DOI:10.1088/1742-6596/1104/1/012006

6.   Kolacio I., Prpić-ORŠIĆ J., Kurilić K. Analiza sidrenja poluuronjive platforme scarabeo 7, Brodogradnja. 2010, 61 p., pp. 34 — 41.

7.   Naumenko A.A., Blagovidova I.L., Pyanov A.V., Ivanova O.A. Numerical simulation of the positioning process of complex floating objects when performing offshore operations. Transactions of the Krylov state research center. 2019. No. S2. pp. 239 — 247. DOI: 10.24937/2542-2324-2019-2-S-I-239-247

8.   Ivanova O.A., Kushnir V.M., Blagovidova, I.L. Physical models of TLP and SPAR deepwater drilling platforms for experimental researches of the dynamics in the experimental basin. Vestnik SevNTU [Bulletin of SevNTU]. 2014. No. 153. pp. 72 — 79.

9.   Iqbal M., Azam M., Naeem M., Khwaja A.S., Anpalagan A. Optimization classification, algorithms and tools for renewable energy: A review. Renewable and Sustainable Energy Reviews. 2014. No. 39. pp. 640 — 654. DOI: 10.1016/j.rser.2014.07.120.

10. Wu B., Cheng X., Chen Y., Ni X , Zhang, K. Design Automation of Mooring Systems for Floating Structures. Practical Design of Ships and Other Floating Structures. 2020. No. 65. pp. 579 — 594. DOI: 10.1007/978-981-15-4680-8_40.

11. Montasir O. A., Yenduri A., Kurian V.J. Mooring System Optimization and Effect of Different Line Design Variables on Motions of Truss Spar Platforms in Intact and Damaged Conditions. China Ocean Engineering. 2019. 33 (4). pp. 385 — 397. DOI: 10.1007/s13344-019-0037-1.

12. Monteiro B.F., de Pina A.A., Baioco J.S., Albrecht C.H., de Lima B.S.L.P., Jacob B.P. Toward a methodology for the optimal design of mooring systems for floating offshore platforms using evolutionary algorithms. Marine Systems and Ocean Technology. 2016. 11 (3-4). pp. 55 — 67. DOI: 10.1007/s40868-016-0017-8

13. De Pina A.C., de Pina A.A., Albrecht C.H., Leite Pires de Lima B.S., Jacob B.P. ANN-based surrogate models for the analysis of mooring lines and risers. Applied Ocean Research. 2013. No. 41. pp. 76 — 86. DOI: 10.1016/j.apor.2013.03.003

14. Carbono A., Menezes, I., Martha, L. F. Mooring Pattern Optimization using Genetic Algorithms. 6th World Congresses of Structural and Multidisciplinary Optimization. Brazil. Rio de Janeiro, 2005.

15. Shafieefar M., Rezvani A. Mooring optimization of floating platforms using a genetic algorithm. Ocean Engineering. 2007. 34 (10). pp. 1413 — 1421. DOI: 10.1016/j.oceaneng.2006.10.005

16. Mirzaei M., Maimun A., Priyanto A., Fitriadhy A. Mooring Pattern Optimization Using A Genetic Algorithm. Jurnal Teknologi (Sciences and Engineering). 2014, 66, pp.189 — 193. DOI: 10.11113/jt.v66.2519

17. Jin H.Z., Su X.Y., Yu A.C., Lin F. Design of automatic mooring positioning system based on mooring line switch. Dianji Yu Kongzhi Xuebao [Electric Machines and Control]. 2014. 18 (5), pp. 93 — 98.

18. Xu S.W, Liang, M.X, Wang, X.F, Ding, A.B. A Mooring System Deployment Design Methodology for Vessels at Varying Water Depths. China Ocean Engineering. 2020. Vol. 34, No. 2. pp. 1 — 13. DOI: 10.1007/s13344-020-0018-4

19. Monteiro B.D.F., Albrecht C H. et al. Optimization of mooring systems for floating offshore platforms considering seabed obstacles. Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. Norway. Trondheim, 2017. DOI: 10.1115/OMAE2017-61482

20. Monteiro B.D.F., Baioco J.S., Albrecht C.H., de Lima B.S.L.P., Jacob B.P. Optimization of mooring systems in the context of an integrated design methodology. Marine Structures. 2021. Vol. 75. DOI: 10.1016/j.marstruc.2020.102874

21. Teslyaruk I , Bolshev A. Numerical analysis of behavior offshore anchored structures and improvement of systems of their holding. Proceedings of the Second International Conference on Mathematics and Computers in Sciences and in Industry. Malta. Sliema, 2015. pp. 188 — 190. DOI: 10.1109/MCSI.2015.45

22. Teslyaruk I., Bolshev A. Technique optimization of holding systems of marine floating objects on the basis of numerical modeling of their behavior. International Journal of Mathematics and Computers in Simulation. 2016. Vol. 10. pp. 72 — 76.

23. Vasilev F.P. Metody optimizatsii [Optimization methods]. — M.: Faktorial Press, 2002

24. Amosov A.A., Dubinskiy Yu.A., Kopchenova N.V. Vychislitelnye metody dlya inzhenerov [Computational methods for engineers], Moskva: Vysshaya shkola, 1994, 273 p.

25. Bolshev A.S., Frolov S.A., Kuteynikov M.A. Matematicheskoe modelirovanie povedeniya morskikh plavuchikh ob'ektov v programmnom komplekse "Anchored Structures" [Mathematical modeling of marine floating objects behavior in the "Anchored Structures" software package] // Research Bulletin of Russian Maritime Register of Shipping, 2013. No. 36. pp. 68 — 90.

26. Spravochnye dannye po rezhimu vetra i volneniya Barentseva, Okhotskogo i Kaspiyskogo morey [Reference data on wind and wave regimes in the Barents, Okhotsk and Caspian seas]. Russian Maritime Register of Shipping, St. Petersburg, 2003, 214 p.

 

About authors:

A.S. Bolshev, DSc, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, e mail: Bolshev_as@spbstu.ru

S.A. Frolov, PhD, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, e-mail: Frolov_sa@spbstu.ru

E.V. Shonina, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, e-mail: katerinashonina@mail ru

Issue: 62/63 (2021)

For citation: A.S. Bolshev, S.A. Frolov, E.V. Shonina. Optimization of anchoring systems of offshore floating structures. Research Bulletin by Russian Maritime Register of Shipping. 2021, No. 62/63, pp. 50-61.

UDC 629.5.028/627.231.8

Pp: 50-61