Features of propulsion motors operation as a part of ship electric propulsion systems with semiconductor converters

Features of propulsion motors operation as a part of ship electric propulsion systems with semiconductor converters

Authors: L.N. Tokarev, D.A. Makarov, A.V. Grigoryev

 

Abstract

 

This article discusses the features of operation of the propulsion motor as part of the ship electric propulsion system with a semiconductor converter. The experience in operating electric propulsion systems and the results of computer simulation show that when the propulsion motor is powered from a semiconductor converter, short-duration voltage surges can be observed in the electrical network that significantly exceed the rated value. The appearance of a high pulse voltage is associated with the pulse-width modulation of transistors of an autonomous inverter within the semiconductor converter. The presence of pulses may lead to breakdown of the propulsion motor insulation and failure of the electric propulsion system. To assess the risk of overvoltage in the power supply circuit of the propulsion motor, it is necessary to simulate physical processes in the ship electric propulsion system at the engineering design stage. To confirm the results obtained by calculation, it is also advisable to conduct experimental studies of overvoltage on the windings of propulsion motor on physical models using a prototype semiconductor frequency converter.

 

Keywords: electric ship propulsion, electric propulsion motor, semiconductor converters.

 

References

1.   Vershinin V.I., Makhonin S.V., Parshikov V.A., Khomyak V.A. Sozdaniye system elektrodvizheniya dlya sudov razlichnogo naznacheniya [Development of electric propulsion systems for ships of various types] Transactions of the Krylov State Research Centre 1(387) (2019): pp. 107 — 122. DOI: 10.24937/2542-2324-2019-1-387-107-122

2.   Gelver F.A. Grebnaya elekroenergeticheskaya ustanovka s obschimi shinami postoyannogo toka [Shipboard electric propulsion plants with common DC buses] Sudostroenie 2 (2018): pp. 22 — 27.

3.   Romanovsky V.V., Nikiforov B.V. Makarov A.M. Perspektivy razvitiya system elektrodvizheniya [Prospects for the development of electromotive systems] Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova 10.3 (2018): pp. 586 — 596. DOI 10.21821/2309-5180-2018-10-3-586-596.

4.   Khvatov O.S., Tarpanov I.A. Sudovaya propulsivna gibridnaya ustanovka [Ship hybrid propulsion installation] Bulletin of VSAWT 35 (2013): pp. 337 — 340.

5.   Rosin E.I. Avtomatizirovannye grebnye elektricheskie ustanovki. Dvizhenie sudna i ego glavnaya ustanovka [Automated electric propulsion installations. Ship movement and its main propulsion], L., 1986.

6.   Bykov A.S., Bashaev V.V. Grebnye elektricheskie ustanovki atomnyh ledokolov [Electric propulsion installations of nuclear ice breakers] St. Petersburg, Elmor, 2004.

7.   Romanovskiy V.V., Malishev V.A., Bezhik A.S. Analiz skhemnykh resheny grebnykh elektricheskikh ustanovok s raspredelennoy shinoy postoyannogo toka [Special structure of the electrical propulsion plant with DC-grid system] Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova 11.1 (2019): pp. 169 — 181. DOI: 10.21821/2309-5180-2019-11-1-169-181.

8.   Doerry N. History and the status of electric ship propulsion, integrated power systems, and future trends in the US Navy /N. Doerry, J. Amy, C. Krolick //Proceedings of the IEEE. — 2015. — Vol. 103. — Is. 12. — pp. 2243 — 2251. DOI: 10.1109/JPROC.2015.2494159.

9.   Chan C.C. Electric, hybrid, and fuel-cell vehicles: Architectures and modeling / C.C. Chan, A. Bouscayrol, K. Chen // IEEE transactions on vehicular technology. — 2009. — Vol. 59. — Is. 2. — pp. 589 — 598. DOI: 10.1109/TVT.2009.2033605.

10. Chen J.S. Energy efficiency comparison between hydraulic hybrid and hybrid electric vehicles /J.S. Chen // Energies. — 2015. — Vol. 8. — Is. 6. — pp. 4697 — 4723. DOI: 10.3390/en8064697.

11. Malyshev V.A., Ivanov V.S., Solovey V.S. Raschet i vybor tormoznykh rezistorov grebnoy elektricheskoy ustanovki tankera ledovogo klassa [Calculation and selection of brake resistors for electric propulsion installation of ice class tanker] Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova 5(39) (2016): 172–184. DOI: 10.21821/2309- 5180-2016-8-5-172-1844.

12. Grigorev A.V., Zajnullin R.R. Analiz vozmozhnosti I tselesoobraznosti primemeneniya system elektrodvizheniya na sudakh vspomogatelnogo flota [Analysis of possibility and expediency of using of electrical propulsion plants on ships for auxiliary fleet] Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova 5(27) (2014): pp. 40 — 46.

13. Grigoryev A.V., Zaynullin R.R., Malyshev S.M. Perspektivy primeneniya staticheskikh istochnikov elektroenergii na sudakh s sistemami elektrodvizheniya [Perspectives of using the static electric power sources on ships with electric propulsion plants] Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova 12.1 (2020): pp. 202 — 213. DOI: 10.21821/2309-5180-2020- 12-1-202-213/

14. Grigorev A.V., Shtrambrand V.I., Zaynullin R.R. Tselesoobraznost primeneniya SED na sudakh vspomogatelnogo flota [Practicability of electric propulsion application on vessels of auxiliary fleet] Morskoy flot 4(2014): pp. 38 — 40.

15. Grigorev A.V. Sudovaya sistema elektrodvizheniya novogo pokoleniya [Ship electric propulsion system of new generation] Morskoy flot 2(2012): pp. 38 — 40.

16. Grigorev A.V., Bykov A.S. Analiz tormoznykh rezhimov grebnykh elektricheskikh ustanovok [Analysis of breaking regimes of electic propulsion installations] Ekspluatatsiya morskogo transporta: ezhekvartalnyi sbornik nauchnykh statey 3(61) (2010): pp. 62 — 66.

17. Grigorev A.V. Opyt proektirovaniya i rezultaty ispytanii edinoy elektroenergeticheskoy ustanovki sudna "Vaigach" [Experience of designing and testing results of unified electric power installation of "Vaigach" vessel]. Izv. vuzov. Elektromekhanika 4 (2008): pp. 28 — 31.

18. Grigorev A.V., Romanovskiy V.V., Zaynullin R.R. Skhemnye resheniya perspektivnykh nizkovoltnykh sudovykh sistem elektrodvizheniya [Circuit solutions of long range low-voltage ship electrical propulsion plants] Ekspluatatsiya morskogo transporta 4(62)(2010): pp. 76 — 78.

19. Grigorev A.V., Glekler E.A. Perspektivnaya sudovaya edinaya elektroenergeticheskaya ustanovka [Long range unified ship electic power installation] Ekspluatatsiya morskogo transporta: 3 (53) (2008): pp 68 — 70.

20. Grigorev A.V., Livshits A.I., Glekler E.A., Ulitovskii D.I. Opyt ekspluatatsii elektroenergeticheskoi ustanovki gidrograficheskogo sudna "Vaigach" [Experience of application of electric power plant of hydrographic vessel "Vaigach"], Sudostroenie 6 (2010): pp. 29 — 31.

 

About authors: 

L.N. Tokarev - DSc, Saint Petersburg Electrotechnical University, St. Petersburg

D.A. Makarov - PhD, JSC "Aerospace systems", Dubna

A.V. Grigoryev - PhD, Admiral Makarov State University of Maritime and Inland Shipping, St. Petersburg, e-mail: info@eds-marine ru

Issue: 62/63 (2021)

For citation: L.N. Tokarev, D.A. Makarov, A.V. Grigoryev. Features of propulsion motors operation as a part of ship electric propulsion systems with semiconductor converters. Research Bulletin by Russian Maritime Register of Shipping. 2021, No. 62/63, pp. 131-137.

UDC 629.5.035-83

Pp: 131-137